INTRODUCTION

Corynebacterium is a gram-positive bacillus that is widely distributed in the environment [1]. It consists of more than 80 species and is common in the normal flora of human skin and mucous membranes [1]. These organisms traditionally have been considered contaminants. However, *C. striatum* has been linked to respiratory infection, bacteremia, and endocarditis; and it is strongly related to nosocomial outbreaks. At present, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) is the most accurate routine identification method. Many *C. striatum* strains are multi-drug resistant, being susceptible only to vancomycin and linezolid. We should survey the antimicrobial susceptibility results regularly to monitor its resistance and consider it a possible pathogen.

Key words: *Corynebacterium striatum*; Emerging pathogen; Resistance

1. Epidemiology and Clinical Features

Corynebacterium striatum is part of the normal flora of the skin and mucous membranes in humans and is widely disseminated in the environment. It has generally been regarded as a contaminant when isolated from clinical specimens. However, the association of *Corynebacterium* species with pathogenicity in both immunocompromised and immunocompetent hosts [2] and can colonize various medical devices. Since *C. striatum* was first reported as a causative pathogen of pleuropulmonary infection in 1980 [3], it has been associated with diverse infections and nosocomial outbreaks. Thus, the organisms have been responsible for respiratory infection [4], infectious endocarditis [5], arthritis [7], cellulitis [8,9], catheter-related bloodstream infection [10,11], meningitis [12], skin infection [13], osteomyelitis [14], abscess [15], and wound infection [16]. An important aspect of several of these infections, including infectious endocarditis, sepsis, or meningitis, caused by *C. striatum* is an association with a nosocomial risk factor such as med-

Microbiological Characteristics of Corynebacterium striatum, an Emerging Pathogen

Sae Am Song¹, Jeong Hwan Shin¹²

¹Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
²Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Korea

Corresponding Author: Jeong Hwan Shin
Department of Laboratory Medicine, Inje University Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea
Tel: +82-51-890-6475
Fax: +82-51-890-8615
E-mail: jhsmile@inje.ac.kr

Received 3 Apr 2018
Revised 5 May 2018
Accepted 12 Jun 2018

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Laboratory Diagnosis

Corynebacterium species are gram-positive, slightly curved, typically club-shaped bacilli. Generally, Corynebacterium can be isolated on 5% sheep blood agar-based selective medium at 37°C. The biochemical identification of various species can be difficult because of their biochemical variability. For routine identification, micromethods such as API Coryne strip (bioMérieux, Marcy l’Étoile, France) and RapID® CB Plus or several automated identification systems are commonly used in the clinical microbiology laboratory.

API Coryne strip can be used for suspect colonies, which are tiny grayish, mostly translucent, corynform organisms. The device consists of 20 microtubes that test carbohydrate fermentation or enzymatic activity. Unfortunately, the device cannot distinguish C. striatum from C. amycolatum because these species have similar phenotypic characteristics. Moreover, the final identification is based on the statistical use of multiplicity. Therefore, the accuracy is relatively low.

Various automated identification systems for Corynebacterium are used routinely. VITEK®2 (bioMérieux) with an anaerobe and Corynebacterium (ANC) identification card employs kinetic analysis utilizing fluorescence, turbidity, and colorimetric technology based on the metabolic processes of the microorganisms. Rennie et al. reported that the correct identification rate of the Vitek2 ANC identification card for Corynebacterium species was 80% to 100% [29]. The Microscan system (Beckman Coulter, Brea, CA, USA) and BD Phoenix system (Becton Dickinson, Franklin Lakes, NJ, USA) also are commercially available for Corynebacterium identification.

The reliable identification techniques include matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequencing. MALDI-TOF MS, which is based on the protein composition of microorganisms, has been used in clinical laboratories to identify Corynebacterium species. Vila et al. reported that MALDI-TOF MS analysis is a rapid and consistent system for identification of Corynebacterium at the species level within 15 min [30]. Rong Bao et al. reported the MALDI-TOF identification rate for Corynebacterium as 92% compared with rpoB gene sequencing [31]. Other studies showed similar identification rates, ranging from 92.9% to 100% [32-35]. Therefore, MALDI-TOF may be a more useful diagnostic method than biochemical assay and can be a primary identification tool.

Various molecular methods have been applied for identification of Corynebacterium species, including 16S rRNA sequencing, rpoB gene sequencing, and restriction fragment-length polymorphism (RFLP), DNA–DNA hybridization, and real-time polymerase chain reaction (PCR). Because the 16S rRNA gene of Corynebacterium shows low intra-genus polymorphism, nearly complete 16S rRNA sequencing (approximately 1,500 bp) is required to identify the species level. The Rpo B gene also can be used to discriminate Corynebacterium species. Khamis reported that the rpoB gene is polymorphic enough to identify Corynebacterium species [36]. Alibi et al. suggested PCR restriction analysis using the rpoB gene to differentiate C. striatum from other Corynebacterium species [32]. We do not need to use these molecular methods as routine tests, but they can be used as a confirmatory tool when we need to check the final results because of an inappropriate phenotypic method.
3. Antimicrobial Susceptibility Test and Resistance

The Clinical and Laboratory Standards Institute (CLSI) published “Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved Guideline M45-A” in 2006. This guideline provides the information and interpretative criteria for broth microdilution susceptibility testing of Corynebacterium species. However, there are no interpretative criteria for disk diffusion testing. The testing conditions require lysed horse blood-supplemented Mueller-Hinton broth for adequate growth. Moreover, the medium should contain calcium 50 μg/mL for testing of daptomycin. The antimicrobial agents used are as follows: penicillin, cefotaxime (cefepime, ceftriaxone), imipenem (meropenem), vancomycin, daptomycin, gentamicin, erythromycin, ciprofloxacin, doxycycline (tetracycline), clindamycin, trimethoprim-sulfamethoxazole, quinupristin-dalfopristin, and linezolid. The interpretive criteria for penicillin and erythromycin are estimated from the minimum inhibitory concentrations (MICs) of Corynebacterium species. However, the interpretive criteria for cephalosporin, linezolid, and others are adapted from those for Streptococcus, Enterococcus, and Staphylococcus species published in CLSI document M100. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) provides a breakpoint table for interpretation of MICs and zone diameters for Corynebacterium species. Unlike CLSI, EUCAST includes the interpretive criteria for the disk diffusion method. The medium should have 5% defibrinated horse blood and beta-NAD 20 mg/L. The antimicrobial agents tested are benzylpenicillin, ciprofloxacin (moxifloxacin), gentamicin, vancomycin, clindamycin, tetracycline, linezolid, and rifampicin. It is not easy to perform routine antimicrobial susceptibility testing of C. striatum in the clinical laboratory because there is no commercial kit, and growth requires a special medium including horse blood.

Previous reports revealed that C. striatum generally is susceptible to several antimicrobial agents, including penicillin, cefazolin, imipenem, and vancomycin [28,37]. However, many more recent articles found an increase in multidrug resistance [21,23,38]. In Korea, Yoo et al. described bacteremia caused by multidrug-resistant C. striatum [39].

In 2006, C. striatum strains in Japan were all susceptible to vancomycin but showed high-level resistance to erythromycin, tetracycline, rifampin, and ciprofloxacin [40]. In one report from Brazil, 87% of C. striatum were resistant to most antimicrobial agents except vancomycin, linezolid, and tetracycline [41]. Vancomycin was consistently effective in most previous reports of C. striatum testing.

Daptomycin can be considered to treat gram-positive pathogens. Several reports show that Corynebacterium infections can be treated with daptomycin, for which the MICs are low [42,43]. However, daptomycin-resistant C. striatum is discussed in the literature [43,44]. Van Hal et al. reported that daptomycin resistance is highly correlated with higher MICs for vancomycin in S. aureus because cell-wall thickening can alter the charge of the outer membrane, which reduces daptomycin passage through the cell membrane [45]. However, others found no structural difference between daptomycin-susceptible and -resistant Corynebacterium strains [44,46]. McElvania TeKippe et al. [43] revealed a very interesting finding concerning daptomycin resistance. They demonstrated the acquisition of high-level resistance when the daptomycin-susceptible isolates were incubated with the drug. This implies the possibility of acquisition of daptomycin resistance in patients treated for a long time with the drug.

The other agent employed to treat C. striatum infection is linezolid because there have been no reports of resistance for Corynebacterium species. However, this drug carries a 34% to 80% rate of adverse effects that result in discontinuation of administration during long courses [47].

Ceftaroline has been explored for uncommon gram-positive pathogens, including C. striatum [48,49]. The efficacy was variable for C. striatum and other Corynebacterium species. On the other hand, McMullen et al. reported that C. striatum is nearly universally resistant to ceftaroline, although the extent of resistance is variable. They presumed that the resistance is attributable to the modification of penicillin-binding protein and concluded that ceftaroline is not adequate to use as a treatment. McMullen et al. [35] tested the activity of telavancin and revealed achievable MICs for C. striatum treatment.

CONCLUSION

Corynebacterium striatum is part of the normal flora of the skin and mucous membranes in humans. However, it can have pathogenicity in both immunocompromised and immunocompetent hosts. C. striatum has been associated with diverse infections and nosocomial outbreaks including skin infection, respiratory infection, and severe invasive infections. In addition, C. striatum is resistant to many antimicrobial treatments. We should identify C. striatum correctly to the species level and survey the antimicrobial susceptibility results regularly to monitor its resistance.

CONFLICTS OF INTEREST

The authors have no financial conflicts of interest.
ACKNOWLEDGEMENT

This work was supported by the BioNano Health-Guard Research Center funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea as a Global Frontier Project (Grant Number H-GUARD_2014M3A6B2060509).

REFERENCES

25. Cone LA, Curry N, Wuestoff MA, O’Connell SJ, Feller JF. Septic synovitis and arthritis due to Corynebacterium striatum following...

48. Sader HS, Jones RN, Stibbell MG, Flamm RK. Ceftaroline activity tested against uncommonly isolated Gram-positive pathogens: report from the SENTRY Antimicrobial Surveillance Program (2008-